The search functionality is under construction.

Keyword Search Result

[Keyword] genetic algorithm(257hit)

61-80hit(257hit)

  • Mixed-Mode Extraction of Figures of Merit for InGaAs Quantum-Well Lasers and SiGe Low-Noise Amplifiers

    Hsien-Cheng TSENG  Jibin HORNG  Chieh HU  Seth TSAU  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E93-C No:11
      Page(s):
    1645-1647

    We propose a new parameter-extraction approach based on a mixed-mode genetic algorithm (GA), including the efficient search-space separation and local-minima-convergence prevention process. The technique, substantially extended from our previous work, allows the designed figures-of-merit, such as internal quantum efficiency (ηi) as well as transparency current density (Jtr) of lasers and minimum noise figure (NFmin) as well as associated available gain (GA,assoc) of low-noise amplifiers (LNAs), extracted by an analytical equation-based methodology combined with an evolutionary numerical tool. Extraction results, which agree well with actually measured data, for both state-of-the-art InGaAs quantum-well lasers and advanced SiGe LNAs are presented for the first time to demonstrate this multi-parameter analysis and high-accuracy optimization.

  • Genetic Algorithm Based Equalizer for Ultra-Wideband Wireless Communication Systems

    Nazmat SURAJUDEEN-BAKINDE  Xu ZHU  Jingbo GAO  Asoke K. NANDI  Hai LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2725-2734

    In this paper, we propose a genetic algorithm (GA) based equalization approach for direct sequence ultra-wideband (DS-UWB) wireless communication systems, where the GA is combined with a RAKE receiver to combat the inter-symbol interference (ISI) due to the frequency selective nature of UWB channels for high data rate transmission. The proposed GA based equalizer outperforms significantly the RAKE and the RAKE-minimum mean square error (MMSE) receivers according to results obtained from intensive simulation work. The RAKE-GA receiver also provides bit-error-rate (BER) performance very close to that of the optimal RAKE-maximum likelihood detection (MLD) approach, while offering a much lower computational complexity.

  • Evolution of Cellular Automata toward a LIFE-Like Rule Guided by 1/f Noise

    Shigeru NINAGAWA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:6
      Page(s):
    1489-1496

    There is evidence in favor of a relationship between the presence of 1/f noise and computational universality in cellular automata. To confirm the relationship, we search for two-dimensional cellular automata with a 1/f power spectrum by means of genetic algorithms. The power spectrum is calculated from the evolution of the state of the cell, starting from a random initial configuration. The fitness is estimated by the power spectrum with consideration of the spectral similarity to the 1/f spectrum. The result shows that the rule with the highest fitness over the most runs exhibits a 1/f type spectrum and its transition function and behavior are quite similar to those of the Game of Life, which is known to be a computationally universal cellular automaton. These results support the relationship between the presence of 1/f noise and computational universality.

  • Noise Reduction in CMOS Image Sensor Using Cellular Neural Networks with a Genetic Algorithm

    Jegoon RYU  Toshihiro NISHIMURA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:2
      Page(s):
    359-366

    In this paper, Cellular Neural Networks using genetic algorithm (GA-CNNs) are designed for CMOS image noise reduction. Cellular Neural Networks (CNNs) could be an efficient way to apply to the image processing technique, since CNNs have high-speed parallel signal processing characteristics. Adaptive CNNs structure is designed for the reduction of Photon Shot Noise (PSN) changed according to the average number of photons, and the design of templates for adaptive CNNs is based on the genetic algorithm using real numbers. These templates are optimized to suppress PSN in corrupted images. The simulation results show that the adaptive GA-CNNs more efficiently reduce PSN than do the other noise reduction methods and can be used as a high-quality and low-cost noise reduction filter for PSN. The proposed method is designed for real-time implementation. Therefore, it can be used as a noise reduction filter for many commercial applications. The simulation results also show the feasibility to design the CNNs template for a variety of problems based on the statistical image model.

  • Circuit Design Optimization Using Genetic Algorithm with Parameterized Uniform Crossover

    Zhiguo BAO  Takahiro WATANABE  

     
    PAPER-Nonlinear Problems

      Vol:
    E93-A No:1
      Page(s):
    281-290

    Evolvable hardware (EHW) is a new research field about the use of Evolutionary Algorithms (EAs) to construct electronic systems. EHW refers in a narrow sense to use evolutionary mechanisms as the algorithmic drivers for system design, while in a general sense to the capability of the hardware system to develop and to improve itself. Genetic Algorithm (GA) is one of typical EAs. We propose optimal circuit design by using GA with parameterized uniform crossover (GApuc) and with fitness function composed of circuit complexity, power, and signal delay. Parameterized uniform crossover is much more likely to distribute its disruptive trials in an unbiased manner over larger portions of the space, then it has more exploratory power than one and two-point crossover, so we have more chances of finding better solutions. Its effectiveness is shown by experiments. From the results, we can see that the best elite fitness, the average value of fitness of the correct circuits and the number of the correct circuits of GApuc are better than that of GA with one-point crossover or two-point crossover. The best case of optimal circuits generated by GApuc is 10.18% and 6.08% better in evaluating value than that by GA with one-point crossover and two-point crossover, respectively.

  • A Multistage Method for Multiobjective Route Selection

    Feng WEN  Mitsuo GEN  

     
    PAPER-Intelligent Transport System

      Vol:
    E92-A No:10
      Page(s):
    2618-2625

    The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.

  • Multilayer Traffic Network Optimized by Multiobjective Genetic Clustering Algorithm

    Feng WEN  Mitsuo GEN  Xinjie YU  

     
    PAPER-Intelligent Transport System

      Vol:
    E92-A No:8
      Page(s):
    2107-2115

    This paper introduces a multilayer traffic network model and traffic network clustering method for solving the route selection problem (RSP) in car navigation system (CNS). The purpose of the proposed method is to reduce the computation time of route selection substantially with acceptable loss of accuracy by preprocessing the large size traffic network into new network form. The proposed approach further preprocesses the traffic network than the traditional hierarchical network method by clustering method. The traffic network clustering considers two criteria. We specify a genetic clustering algorithm for traffic network clustering and use NSGA-II for calculating the multiple objective Pareto optimal set. The proposed method can overcome the size limitations when solving route selection in CNS. Solutions provided by the proposed algorithm are compared with the optimal solutions to analyze and quantify the loss of accuracy.

  • A General-Purpose Path Generation Method Using Genetic Algorithms

    Jun INAGAKI  Toshitada MIZUNO  Tomoaki SHIRAKAWA  Tetsuo SHIMONO  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:7
      Page(s):
    1503-1506

    A method using genetic algorithms for path generation have been proposed; however, this method is limited to particular applications, and there are limitations on the types of paths that can be represented. This paper therefore proposes a path generation method that is applicable to more general-purpose applications compared to previous methods based on a new design of the genotype used in the genetic algorithm.

  • Effective Scheduling Algorithms for I/O Blocking with a Multi-Frame Task Model

    Shan DING  Hiroyuki TOMIYAMA  Hiroaki TAKADA  

     
    PAPER-System Programs

      Vol:
    E92-D No:7
      Page(s):
    1412-1420

    A task that suspends itself to wait for an I/O completion or to wait for an event from another node in distributed environments is called an I/O blocking task. Conventional hard real-time scheduling theories use framework of rate monotonic analysis (RMA) to schedule such I/O blocking tasks. However, most of them are pessimistic. In this paper, we propose effective algorithms that can schedule a task set which has I/O blocking tasks under dynamic priority assignment. We present a new critical instant theorem for the multi-frame task set under dynamic priority assignment. The schedulability is analyzed under the new critical instant theorem. For the schedulability analysis, this paper presents saturation summation which is used to calculate the maximum interference function (MIF). With saturation summation, the schedulability of a task set having I/O blocking tasks can be analyzed more accurately. We propose an algorithm which is called Frame Laxity Monotonic Scheduling (FLMS). A genetic algorithm (GA) is also applied. From our experiments, we can conclude that FLMS can significantly reduce the calculation time, and GA can improve task schedulability ratio more than is possible with FLMS.

  • Efficient Genetic Algorithm for Optimal Arrangement in a Linear Consecutive-k-out-of-n: F System

    Koji SHINGYOCHI  Hisashi YAMAMOTO  

     
    PAPER

      Vol:
    E92-A No:7
      Page(s):
    1578-1584

    A linear consecutive-k-out-of-n: F system is an ordered sequence of n components. This system fails if, and only if, k or more consecutive components fail. Optimal arrangement is one of the main problems for such kind of system. In this problem, we want to obtain an optimal arrangement of components to maximize system reliability, when all components of the system need not have equal component failure probability and all components are mutually statistically independent. As n becomes large, however, the amount of calculation would be too much to solve within a reasonable computing time even by using a high-performance computer. Hanafusa and Yamamoto proposed applying Genetic Algorithm (GA) to obtain quasi optimal arrangement in a linear consecutive-k-out-of-n: F system. GA is known as a powerful tool for solving many optimization problems. They also proposed ordinal representation, which produces only arrangements satisfying the necessary conditions for optimal arrangements and eliminates redundant arrangements with same system reliabilities produced by reversal of certain arrangements. In this paper, we propose an efficient GA. We have modified the previous work mentioned above to allocate components with low failure probabilities, that is to say reliable components, at equal intervals, because such arrangements seem to have relatively high system reliabilities. Through the numerical experiments, we observed that our proposed GA with interval k provides better solutions than the previous work for the most cases.

  • Ant Colony Optimization with Genetic Operation and Its Application to Traveling Salesman Problem

    Rong-Long WANG  Xiao-Fan ZHOU  Kozo OKAZAKI  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E92-A No:5
      Page(s):
    1368-1372

    Ant colony optimization (ACO) algorithms are a recently developed, population-based approach which has been successfully applied to optimization problems. However, in the ACO algorithms it is difficult to adjust the balance between intensification and diversification and thus the performance is not always very well. In this work, we propose an improved ACO algorithm in which some of ants can evolve by performing genetic operation, and the balance between intensification and diversification can be adjusted by numbers of ants which perform genetic operation. The proposed algorithm is tested by simulating the Traveling Salesman Problem (TSP). Experimental studies show that the proposed ACO algorithm with genetic operation has superior performance when compared to other existing ACO algorithms.

  • Digital Pattern Search and Its Hybridization with Genetic Algorithms for Bound Constrained Global Optimization

    Nam-Geun KIM  Youngsu PARK  Jong-Wook KIM  Eunsu KIM  Sang Woo KIM  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E92-A No:2
      Page(s):
    481-492

    In this paper, we present a recently developed pattern search method called Genetic Pattern Search algorithm (GPSA) for the global optimization of cost function subject to simple bounds. GPSA is a combined global optimization method using genetic algorithm (GA) and Digital Pattern Search (DPS) method, which has the digital structure represented by binary strings and guarantees convergence to stationary points from arbitrary starting points. The performance of GPSA is validated through extensive numerical experiments on a number of well known functions and on robot walking application. The optimization results confirm that GPSA is a robust and efficient global optimization method.

  • Evaluation of Interconnect-Complexity-Aware Low-Power VLSI Design Using Multiple Supply and Threshold Voltages

    Hasitha Muthumala WAIDYASOORIYA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E91-A No:12
      Page(s):
    3596-3606

    This paper presents a high-level synthesis approach to minimize the total power consumption in behavioral synthesis under time and area constraints. The proposed method has two stages, functional unit (FU) energy optimization and interconnect energy optimization. In the first stage, active and inactive energies of the FUs are optimized using a multiple supply and threshold voltage scheme. Genetic algorithm (GA) based simultaneous assignment of supply and threshold voltages and module selection is proposed. The proposed GA based searching method can be used in large size problems to find a near-optimal solution in a reasonable time. In the second stage, interconnects are simplified by increasing their sharing. This is done by exploiting similar data transfer patterns among FUs. The proposed method is evaluated for several benchmarks under 90 nm CMOS technology. The experimental results show that more than 40% of energy savings can be achieved by our proposed method.

  • Efficient Hybrid Grid Synthesis Method Based on Genetic Algorithm for Power/Ground Network Optimization with Dynamic Signal Consideration

    Yun YANG  Shinji KIMURA  

     
    PAPER-Physical Level Design

      Vol:
    E91-A No:12
      Page(s):
    3431-3442

    This paper proposes an efficient design algorithm for power/ground (P/G) network synthesis with dynamic signal consideration, which is mainly caused by Ldi/dt noise and Cdv/dt decoupling capacitance (DECAP) current in the distribution network. To deal with the nonlinear global optimization under synthesis constraints directly, the genetic algorithm (GA) is introduced. The proposed GA-based synthesis method can avoid the linear transformation loss and the restraint condition complexity in current SLP, SQP, ICG, and random-walk methods. In the proposed Hybrid Grid Synthesis algorithm, the dynamic signal is simulated in the gene disturbance process, and Trapezoidal Modified Euler (TME) method is introduced to realize the precise dynamic time step process. We also use a hybrid-SLP method to reduce the genetic execute time and increase the network synthesis efficiency. Experimental results on given power distribution network show the reduction on layout area and execution time compared with current P/G network synthesis methods.

  • Optimal Sensor Deployment for Wireless Surveillance Sensor Networks by a Hybrid Steady-State Genetic Algorithm

    Jae-Hyun SEO  Yong-Hyuk KIM  Hwang-Bin RYOU  Si-Ho CHA  Minho JO  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3534-3543

    An important objective of surveillance sensor networks is to effectively monitor the environment, and detect, localize, and classify targets of interest. The optimal sensor placement enables us to minimize manpower and time, to acquire accurate information on target situation and movement, and to rapidly change tactics in the dynamic field. Most of previous researches regarding the sensor deployment have been conducted without considering practical input factors. Thus in this paper, we apply more real-world input factors such as sensor capabilities, terrain features, target identification, and direction of target movements to the sensor placement problem. We propose a novel and efficient hybrid steady-state genetic algorithm giving low computational overhead as well as optimal sensor placement for enhancing surveillance capability to monitor and locate target vehicles. The proposed algorithm introduces new two-dimensional geographic crossover and mutation. By using a new simulator adopting the proposed genetic algorithm developed in this paper, we demonstrate successful applications to the wireless real-world surveillance sensor placement problem giving very high detection and classification rates, 97.5% and 87.4%, respectively.

  • An Effective GA-Based Scheduling Algorithm for FlexRay Systems

    Shan DING  Hiroyuki TOMIYAMA  Hiroaki TAKADA  

     
    PAPER-System Programs

      Vol:
    E91-D No:8
      Page(s):
    2115-2123

    An advanced communication system, the FlexRay system, has been developed for future automotive applications. It consists of time-triggered clusters, such as drive-by-wire in cars, in order to meet different requirements and constraints between various sensors, processors, and actuators. In this paper, an approach to static scheduling for FlexRay systems is proposed. Our experimental results show that the proposed scheduling method significantly reduces up to 36.3% of the network traffic compared with a past approach.

  • Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    Shengling WANG  Yong CUI  Rajeev KOODLI  Yibin HOU  Zhangqin HUANG  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1597-1608

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  • Optimizing Markov Model Parameters for Asynchronous Impulsive Noise over Broadband Power Line Communication Network

    Tan-Hsu TAN  San-Yuan HUANG  Ching-Su CHANG  Yung-Fa HUANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E91-A No:6
      Page(s):
    1533-1536

    A statistical model based on a partitioned Markov-chains model has previously been developed to represent time domain behavior of the asynchronous impulsive noise over a broadband power line communication (PLC) network. However, the estimation of its model parameters using the Simplex method can easily trap the final solution at a local optimum. This study proposes an estimation scheme based on the genetic algorithm (GA) to overcome this difficulty. Experimental results show that the proposed scheme yields estimates that more closely match the experimental data statistics.

  • Modeling Network Intrusion Detection System Using Feature Selection and Parameters Optimization

    Dong Seong KIM  Jong Sou PARK  

     
    PAPER-Application Information Security

      Vol:
    E91-D No:4
      Page(s):
    1050-1057

    Previous approaches for modeling Intrusion Detection System (IDS) have been on twofold: improving detection model(s) in terms of (i) feature selection of audit data through wrapper and filter methods and (ii) parameters optimization of detection model design, based on classification, clustering algorithms, etc. In this paper, we present three approaches to model IDS in the context of feature selection and parameters optimization: First, we present Fusion of Genetic Algorithm (GA) and Support Vector Machines (SVM) (FuGAS), which employs combinations of GA and SVM through genetic operation and it is capable of building an optimal detection model with only selected important features and optimal parameters value. Second, we present Correlation-based Hybrid Feature Selection (CoHyFS), which utilizes a filter method in conjunction of GA for feature selection in order to reduce long training time. Third, we present Simultaneous Intrinsic Model Identification (SIMI), which adopts Random Forest (RF) and shows better intrusion detection rates and feature selection results, along with no additional computational overheads. We show the experimental results and analysis of three approaches on KDD 1999 intrusion detection datasets.

  • Design Method for a Low-Profile Dual-Shaped Reflector Antenna with an Elliptical Aperture by the Suppression of Undesired Scattering

    Yoshio INASAWA  Shinji KURODA  Kenji KUSAKABE  Izuru NAITO  Yoshihiko KONISHI  Shigeru MAKINO  Makio TSUCHIYA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    615-624

    A design method is proposed for a low-profile dual-shaped reflector antenna for the mobile satellite communications. The antenna is required to be low-profile because of mount restrictions. However, reduction of its height generally causes degradation of antenna performance. Firstly, an initial low-profile reflector antenna with an elliptical aperture is designed by using Geometrical Optics (GO) shaping. Then a Physical Optics (PO) shaping technique is applied to optimize the gain and sidelobes including mitigation of undesired scattering. The developed design method provides highly accurate design procedure for electrically small reflector antennas. Fabrication and measurement of a prototype antenna support the theory.

61-80hit(257hit)